1.1.3. Криволинейный интеграл второго рода (по координатам) и его ВЫЧИСЛЕНИЕ

Пусть на плоскости хОу задана дуга М0М, которая имеет длину, и на ней задана функция Х(х, у) (рис. 1.1).

Выполним операции:

1) разобьём произвольно дугу М0М на n частей точками М0, М1,… Мn = М;

2) в каждой дуге Мk-1Мk выберем произвольно по точке  и вычислим Х(Nk);

Рис. 1.1.

3) умножим на приращение ;

4) составим интегральную сумму:

;                     (1.9)

5) найдем предел суммы (1.9) при стремлении к нулю наибольшей из длин частных дуг (максимального диаметра разбиения ). Этот предел (в случае непрерывной функции Х(х, у) можно доказать, что существует) называется криволинейным интегралом от Х(х, у) по переменному х вдоль кривой М0М и обозначается через

                                             (1.10)

Аналогично определяется криволинейный интеграл от Y(x,y) по переменному у:

                                              (1.11)

Если кривая М0М задана в пространстве XYZ и на кривой заданы непрерывные функции Х(х, у, z), Y(х, у, z)и Z(х, у, z), то поступая подобно плоскому случаю, определяют криволинейные интегралы вдоль кривой М0М:

                                               (1.12)

                                                (1.13)

                                               (1.14)

Вводят составной криволинейный интеграл как для плоского случая, так и пространственного и обозначают:

                                                  (1.15)

и

.                                      (1.16)

Отметим, что из определения вытекают следующие свойства криволинейных интегралов второго рода (мы рассмотрим свойства на , но они имеют место и для интегралов (1.11) – (1.16)).

1) При перемене направления дуги (пути интегрирования) криволинейный интеграл изменит только свой знак:

.

2) Постоянный множитель можно вынести за знак интеграла:

.

3) Криволинейный интеграл от суммы конечного числа слагаемых равен сумме криволинейных интегралов слагаемых.

4) Если путь интегрирования М0М  разбить на части, например М0А и АМ (свойство аддитивности), то (рис. 1.2,а)

.                                                  (1.17)

5) Криволинейный интеграл вдоль замкнутой кривой, взятый при заданном направлении обхода, не зависит от выбора начальной точки (рис. 1.2,б.).

                               а)                                           б)

               

Рис. 1.2

Доказательство:

Правые части последних равенств равны, поэтому равны и левые части.

Перейдем к вопросу вычисления криволинейных интегралов по координатам.

Пусть направленная кривая К пространства задана параметрическими уравнениями:  x = x(t),  y = y(t),  z = z(t), где функции x(t), y(t) и z(t) – имеют непрерывные производные по t и x = х(М0),  xm = x(М). Тогда при нашем разбиении (см. определение (1.9),

точки Мк(xk,yk), соответствующие этим t, разобьют дугу М0М также на n частей. По формуле Лагранжа получим:

где         и  .

Суммируя, найдем:

                              (1.18)

где левая часть (I.3.10) есть интегральная сумма для криволинейного интеграла от Х(х,у), а правая часть является интегральной суммой для определенного интеграла по переменной t. Перейдя к пределу при , получим:

                                       (1.19)

Аналогично можно получить формулы и для всех других криволинейных интегралов. Запишем правило интегрирования для пространственного случая (для плоского случая рекомендуется сформулировать самостоятельно, подобно приведенному).

Правило: для вычисления криволинейного интеграла (1.16) следует в подынтегральном выражении заменить x, y, z, dx, dy, dz их выражениями из уравнений пути интегрирования и вычислить определенный интеграл от полученного выражения в пределах наименьшего и наибольшего изменения параметра:

                                   (1.20)

.

Методическое руководство

1) На практике часто бывает необходимо составлять уравнения пути интегрирования, если имеют дело с прямолинейными участками его, тогда используют уравнения прямой, проходящей через две заданные точки:

                                                       (1.21)

приравняв эти отношения параметру t , получают связь x(t), y(t) и z(t), и соответствующие граничные его значения для расстановки пределов интегрирования.

2) Если кривая интегрирования плоская, то за параметр выбирают одну из координат.

Отметим, что в случае криволинейного интеграла второго рода механический смысл его следует из соотношения (1.20) и выражает работу в случае задания силового поля , т.е., когда X,Y,Z – проекции этой силы на оси координат.

Пример 1

Вычислить , где АВ – прямая, соединяющая О(0, 0) с А(1, 2).

Решение. Согласно правилу и методическому руководству уравнение прямой ОА:  y = 2x  .


Отсюда dy = 2dx и

.

Пример 2

Условие примера 1, а путь ОА – парабола с вершиной О и осью Оу .

Решение. Уравнение параболы имеет вид . Так как парабола проходит через точку А(1; 2), то  и k = 2,  а  y = 2x2, откуда dy = 4xdx:

Пример 3

Условие примера 1, а путь ОВА – ломаная, где В(1;0) (сделайте рисунок).

Решение. Используя свойство аддитивности (1.17) получим:

Так как уравнение ОВ: y = 0 , то dy  =0; а уравнение ВА: х = 1 ; поэтому dx = 0:

Пример 4

Вычислить  вдоль отрезка прямой АВ от А(1;1;3) до В(3;2;1).

Решение. Используя (1.21), составим параметрические уравнения прямой:

Значение tA = 0  и  tB = 1;  x’(t) = 2;  y’(t) = 1;  z’(t) = -2.  По формуле (1.20):

Пример 5

Вычислить  вдоль дуги  y = x2 от А(0;0) до В(2;8).

Решение. Примем х за параметр, по формуле (1.20):

будем иметь:

Задачи для упражнений

1) Найти ,  если АВ: =3х2, А(0;0),  В(1;3).

                                                                                                                    Ответ:16. 

2) Найти ,  если АВx = t,  у = t2z = 3 – t, причем tA = 1, tB = 2.

                                                                                                                    Ответ: .

3) Найти , вдоль АВу = х2,  А(1;1)  до  В(2;4).

                                                                                                                     Ответ: 31.

4) Вычислить , где К – отрезок прямой х + у = 1  .

                                                                                                                     Ответ: .

1) Вычислить , где Кx = а cos ty = a sin t .

                                                                                                                     Ответ: .