1.5. Теплота сгорания

Химические реакции сопровождаются поглощением или выделением энергии, в частности тепла. реакции, сопровождающиеся поглощением тепла, а также образующиеся при этом соединения называются эндотермическими. При эндотермических реакциях нагрев реагирующих веществ необходим не только для возникновения реакции, но и в течение всего времени их протекания. Без нагревания извне эндотермическая реакция прекращается.

реакции, сопровождающиеся выделением тепла, а также образующиеся при этом соединения называются экзотермическими. Все реакции горения относятся к экзотермическим. Вследствие выделения тепла они, возникнув в одной точке, способны распространяться на всю массу реагирующих веществ.

Количество тепла, выделяемое при полном сгорании вещества и отнесенное к одному молю, единице массы (кг, г) или объема (м3) горючего вещества называется теплотой сгорания. Теплоту сгорания можно вычислить по табличным данным, пользуясь законом Гесса. Русский химик Г.Г. Гесс в 1840 г. открыл закон, который является частным случаем закона сохранения энергии. Закон Гесса состоит в следующем: тепловой эффект химического превращения не зависит от пути, по которому реакция протекает, а зависит лишь от начального и конечного состояний системы при условии, что температура и давление (или объем) в начале и в конце реакции одинаковы.

Рассмотрим это на примере вычисления теплоты сгорания метана. Метан можно получить из 1 моля углерода и 2 молей водорода. При сжигании метана получаются 2 моля воды и 1 моля диоксида углерода.

С + 2Н2 = СН4 + 74,8 кДж (Q1).

СН4 + 2О2 = СО2 + 2Н2О + Qгор.

Те же продукты образуются при сгорании водорода и углерода. При этих реакциях общее количество выделяющегося тепла равно 963,5 кДж.

2 + О2 = 2Н2О + 570,6 кДж

С + О2 = СО2 + 392,9 кДж.

                                                                       963,5 кДж

Поскольку начальные и конечные продукты в обоих случаях одинаковы, их общие тепловые эффекты должны быть равны согласно закону Гесса, т.е.

Q1 + Qгор = Q,

откуда

Qгор = Q — Q1.                                                     (1.11)

Следовательно, теплота сгорания метана будет равна

Qгор = 963,5 — 74,8 = 888,7 кДж/моль.

Таким образом, теплота сгорания химического соединения (или их смеси) равна разности между суммой теплот образования продуктов сгорания и теплотой образования сгоревшего химического соединения (или веществ, составляющих горючую смесь). Следовательно, для определения теплоты сгорания химических соединений необходимо знать теплоту их образования и теплоту образования продуктов, получающихся после сгорания.

Ниже приведены значения теплот образования некоторых химических соединений:

Оксид алюминия Al2O3………

1631,6

Метан СН4 ……………………

  75,0

Оксид железа Fe2O3 …………

 822,5

Этан С2Н6 ……………………

  88,4

Оксид углерода CO ………….

 110,6

Ацетилен С2Н2 ………………

224,6

Диоксид углерода CO2 ………

 396,9

Бензол С6Н6 …………………

  34,8

Вода H2O …………………….

 286,6

Этилен С2Н4 …………………

  48,6

Водяной пар H2O ……………

 242,2

Толуол С6Н5СН3 …………….

    4,19

Пример 1.5.Определить температуру сгорания этана, если теплота его образования Q1 = 88,4 кДж. Напишем уравнение горения этана.

С2Н6 + 3,5O2 = 2CO2 + 3 H2O + Qгор.

Для определения Qгор необходимо знать теплоты образования продуктов сгорания. теплота образования диоксида углерода 396,9 кДж, а воды 286,6 кДж. Следовательно, Q будет равно

Q = 2×396,9 + 3×286,6 = 1653,6 кДж,

а теплота сгорания этана

Qгор = Q - Q1 = 1653,6 — 88,4 = 1565,2 кДж.

Теплоту сгорания экспериментально определяют в калориметрической бомбе и газовом калориметре. Различают высшую и низшую теплоты сгорания. Высшей теплотой сгорания Qв называют количество тепла, выделяемое при полном сгорании 1 кг или 1 м3 горючего вещества при условии, что содержащийся в нем водород сгорает с образованием жидкой воды. Низшей теплотой сгорания Qн называют количество тепла, выделяемое при полном сгорании 1 кг или 1 м3 горючего вещества при условии сгорания водорода до образования водяного пара и испарении влаги горючего вещества.

Высшую и низшую теплоты сгорания твердых и жидких горючих веществ можно определить по формулам Д.И. Менделеева:

;                           (1.12)

,                              (1.13)

где Qв, Qн — высшая и низшая теплоты сгорания, кДж/кг;  W – содержание в горючем веществе углерода, водорода, кислорода, горючей серы и влаги, %.

Пример 1.6. Определить низшую температуру сгорания сернистого мазута, состоящего из 82,5 % С, 10,65 % Н, 3,1 % S и 0,5 % О; А (зола) = 0,25 %, W = 3 %. Используя уравнение Д.И. Менделеева (1.13), получаем

=38622,7 кДж/кг

Низшую теплоту сгорания 1 м3 сухих газов можно определить по уравнению

 кДж/м3.

Низшая теплота сгорания некоторых горючих газов и жидкостей, полученная экспериментально, приведена ниже:

кДж/кг

кДж/м3

кДж/моль

Углеводороды:

       метан ………………………..

50004,0

35874,8

803,6

этан …………………………

47569,0

63838,8

1430,4

пропан ………………………

46441,9

91350,4

2047,6

Спирты:

метиловый ………………….

22374,6

-

716,0

этиловый ……………………

29874,7

-

1374,3

пропиловый …………………

33658,3

-

2019,5

Низшая теплота сгорания некоторых горючих материалов, рассчитанная по их элементному составу, имеет следующие значения:

Бензин ……………………

43157,0-43785,5

Каучук синтетический

37710,0

Бумага ……………………

13408,0

Керосин ………………

42109,5-42947,5

Древесина

Органическое стекло ..

25140,0

   воздушно-сухая ………..

12570-14665,0

Резина ………………..

33520,0

   в конструкциях зданий…

16760-17070,0

Торф (W = 20 %) …….

15125,9

Существует нижний предел теплоты сгорания, ниже которого вещества становятся не способными к горению в атмосфере воздуха. Эксперименты показывают, что вещества являются негорючими, если они не относятся к взрывоопасным и если их низшая теплота сгорания в воздухе не превышает 2100 кДж/кг. Следовательно, теплота сгорания может служить для ориентировочной оценки горючести веществ. Однако следует отметить, что горючесть твердых веществ и материалов в значительной степени зависит и от их состояния. Так, лист бумаги, легко воспламеняющийся от пламени спички, будучи нанесенным на гладкую поверхность металлической плиты или бетонной стены, становится трудногорючим. Следовательно, горючесть веществ зависит также от скорости отвода тепла из зоны горения.

Практически в процессе горения, особенно на пожарах, указанная в таблицах теплота сгорания полностью не выделяется, так как горение сопровождается недожогом. Известно, что нефтепродукты, а также бензол, толуол, ацетилен, т.е. вещества, богатые

углеродом, горят на пожарах с образованием значительного количества сажи. Сажа  (углерод) способна гореть и выделять тепло. Если при горении она образуется, то, следовательно, горючее вещество выделяет тепла меньше того количества, которое указано в таблицах. Для веществ, богатых углеродом, коэффициент недожога h составляет 0,8 — 0,9. Следовательно, на пожарах при горении 1 кг резины может выделиться не 33520 кДж, а только 33520´0,8 = 26816 кДж.

Размер пожара обычно характеризуется площадью пожара. Количество тепла, выделяющееся с единицы площади пожара в единицу времени, называют теплотой    пожара Qп

Qп = Qн υм h ,

где υм – массовая скорость выгорания, кг/(м2×с).

Удельная теплота пожара при внутренних пожарах характеризует тепловую нагрузку на конструкции зданий и сооружений и используется для расчета температуры пожара.

1.6. Температура горения

Выделяющееся в зоне горения тепло воспринимается продуктами сгорания, поэтому они нагреваются до высокой температуры. Та температура, до которой в процессе горения нагреваются продукты сгорания, называется температурой горения. Различают калориметрическую, теоретическую и действительную температуры горения. Действительная температура горения для условий пожара называется температурой пожара.

Под калориметрической температурой горения понимают ту температуру, до которой нагреваются продукты полного сгорания при следующих условиях:

1) всё выделяющееся при горении тепло расходуется на нагревание продуктов сгорания (потери тепла равны нулю);

2) начальные температуры воздуха и горючего вещества равны 0 0С;

3) количество воздуха равно теоретически необходимому (a = 1);

4) происходит полное сгорание.

Калориметрическая температура горения зависит только от состава горючего вещества и не зависит от его количества.

Теоретическая температура, в отличие от калориметрической, характеризует горение с учетом эндотермического процесса диссоциации продуктов сгорания при высокой температуре

2СО2 2СО + О2 - 566,5 кДж.

2О2 + О2 - 478,5 кДж.

Практически диссоциацию продуктов сгорания необходимо учитывать только при температуре выше 1700 0С. При диффузионном горении веществ в условиях пожара действительные температуры горения не достигают таких значений, поэтому для оценки условий пожара используют только калориметрическую температуру горения и температуру пожара. Различают температуру внутреннего и наружного пожара. Температура внутреннего пожара – это средняя температура дыма в помещении, где происходит пожар. Температура наружного пожара – температура пламени.

При расчете калориметрической температуры горения и температуры внутреннего пожара исходят из того, что низшая теплота сгорания Qн горючего вещества равна энергии qг, необходимой для нагревания продуктов сгорания от 0 0С до калориметрической температуры горения

Qн = qг.

Величину qг назовем условно теплосодержанием продуктов сгорания

qг = ,

где - объем продуктов сгорания, м3/кг, С/ — средняя объемная теплоемкость продуктов сгорания, кДж/(м3?К), tг – температура горения, 0С.

Поскольку продукты сгорания состоят из нескольких газообразных веществ, теплоемкость которых различна, суммарное теплосодержание их может быть выражено следующим образом:

,

где , , - объем компонентов продуктов сгорания , м3/кг; , , - теплоемкость компонентов продуктов сгорания (теплоемкость СО2 принимается для смеси СО2 и SО2), кДж/(м3?К).

В действительности не вся теплота, выделяющаяся при горении в условиях пожара, расходуется на нагревание продуктов сгорания. Большая часть её расходуется на нагревание конструкций, подготовку горючих веществ к горению, нагревание избыточного воздуха и др. Поэтому температура внутреннего пожара значительно ниже калориметрической. Методика расчета температуры горения предполагает, что весь объем продуктов сгорания нагрет до одной и той же температуры. В действительности температура в различных точках очага горения неодинакова. Наиболее высокой является температура в области пространства, где протекает реакция горения, т.е. в зоне горения (пламени). Значительно ниже температура в местах, где находятся горючие пары и газы, выделившиеся из горящего вещества и продуктов сгорания, смешавшихся с избытком воздуха.

Чтобы судить о характере изменения температуры при пожаре в зависимости от различных условий горения, введено понятие среднеобъемной температуры пожара, под которой понимают среднее значение из величины температур, измеренных термометрами в различных точках внутреннего пожара. Эта температура определяется из опыта.