Логическая структура микропроцессора, т. е. конфигурация составляющих микропроцессор логических схем и связей между ними, определяется функциональным назначением. Именно структура задает состав логических блоков микропроцессора и то, как эти блоки должны быть связаны между собой, чтобы полностью отвечать архитектурным требованиям. Срабатывание электронных блоков микропроцессора в определенной последовательности приводит к выполнению заданных архитектурой микропроцессора функций, т. е. к реализации вычислительных алгоритмов. Одни и те же функции можно выполнить в микропроцессорах со структурой, отличающейся набором, количеством и порядком срабатывания логических блоков. Различные структуры микропроцессоров, как правило, обеспечивают их различные возможности, в том числе и различную скорость обработки данных. Логические блоки микропроцессора с развитой архитектурой показаны на рис. 5.5.
Рис. 5.5. Общая логическая структура микропроцессора:
I — управляющая часть, II — операционная часть;
БУПК — блок управления последовательностью команд;
БУВОп — блок управления выполнением операций;
БУФКА — блок управления формированием кодов адресов;
БУВП — блок управления виртуальной памятью;
БЗП — блок защиты памяти;
БУПРПр — блок управления прерыванием работы процессора;
БУВВ — блок управления вводом/выводом;
РгСОЗУ — регистровое сверхоперативное запоминающее устройство;
АЛБ — арифметико-логический блок;
БДА — блок дополнительной арифметики;
БС — блок синхронизации.
При проектировании логической структуры микропроцессоров необходимо рассмотреть:
1) номенклатуру электронных блоков, необходимую и достаточную для реализации архитектурных требований;
2) способы и средства реализации связей между электронными блоками;
3) методы отбора если не оптимальных, то наиболее рациональных вариантов логических структур из возможного числа структур с отличающимся составом блоков и конфигурацией связей между ними.
При проектировании микропроцессора приводятся в соответствие внутренняя сложность кристалла и количество выводов корпуса. Относительный рост числа элементов по мере развития микроэлектронной технологии во много раз превышает относительное увеличение числа выводов корпуса, поэтому проектирование БИС в виде конечного автомата, а не в виде набора схем, реализующих некоторый набор логических переключательных функций и схем памяти, дает возможность получить функционально законченные блоки и устройства ЭВМ.
Использование микропроцессорных комплектов БИС позволяет создать микроЭВМ для широких областей применения вследствие программной адаптации микропроцессора к конкретной области применения: изменяя программу работы микропроцессора, изменяют функции информационно-управляющей системы. Поэтому за счет составления программы работы микропроцессоров в конкретных условиях работы определенной системы можно получить оптимальные характеристики последней.
Если уровень только программной "настройки" микропроцессоров не позволит получить эффективную систему, доступен следующий уровень проектирования — микропрограммный. За счет изменения содержимого ПЗУ или программируемой логической матрицы (ПЛМ) можно "настроиться" на более специфичные черты системы обработки информации. В этом случае частично за счет изменения микропрограмм затрагивается аппаратный уровень системы. Технико-экономические последствия здесь связаны лишь с ограниченным вмешательством в технологию изготовления управляющих блоков микроЭВМ.
Изменение аппаратного уровня информационно-управляющей микропроцессорной системы, включающего в себя функциональные БИС комплекты, одновременно с конкретизацией микропрограммного и программного уровней позволяет наилучшим образом удовлетворить требованиям, предъявляемым к системе.
Решение задач управления в конкретной системе чисто аппаратными средствами (аппаратная логика) дает выигрыш в быстродействии, однако приводит к сложностям при модификации системы. Микропроцессорное решение (программная логика) является более медленным, но более гибким решением, позволяющим развивать и модифицировать систему. Изменение технических требований к информационно-управляющей микропроцессорной системе ведет лишь к необходимости перепрограммирования работы микропроцессора. Именно это качество обеспечивает высокую логическую гибкость микропроцессоров, определяет возможность их широкого использования, а значит и крупносерийного производства.