2.3.1.         Очистители воздуха от пыли

На промышленных предприятиях производится очистка воздуха, не только подаваемого в цехи, отделы, но и удаляемого из них в атмосферу, чтобы не допускать загрязнения наружного воздуха на территории предприятия и прилегающих к нему жилых кварталов. Воздух, выбрасываемый в атмосферу из систем местных отсосов и общеобменной вентиляции производственных помещений, содержащий загрязняющие вещества, должен очищаться и рассеиваться в атмосфере с учетом требований /36/.

Очистка технологических и вентиляционных выбросов от взвешенных частиц пыли или тумана осуществляется в аппаратах пяти типов:

1) механических сухих пылеуловителях (пылеосадочных камерах различных конструкций, инерционных пыле- и брызгоуловителях, циклонах и мультициклонах). Пылеосадочные камеры улавливают частицы размером более 40…50 мкм, инерционные пылеуловители – более 25…30 мкм, циклоны – 10…200 мкм;

2) мокрых пылеуловителях (скрубберах, пенных промывателях, трубах Вентури и др.). Они более эффективны, чем сухие механические аппараты. Скруббер улавливает частицы пыли размером более 10 мкм, а с помощью трубы Вентури улавливаются частицы пыли размером менее 1 мкм;

3) фильтрах (масляных, кассетных, рукавных и др.). Улавливают частицы пыли размером от 0,5 мкм;

4) электрофильтрах, применяемых для тонкой очистки газов. Они улавливают частицы размером от 0,01 мкм;

5) комбинированных пылеуловителях (многоступенчатых, включающих не менее двух разных типов пылеуловителей).

Выбор типа пылеуловителя зависит от характера пыли (от размера пылинок и ее свойств: сухая, волокнистая, липкая пыль и т.д.), ценности данной пыли и необходимой степени очистки.

Наиболее простым пылеуловителем для очистки удаляемого воздуха является пылеосадочная камера (рис. 2.2), работа которой основана на резком уменьшении скорости движения загрязненного воздуха при входе в камеру до 0,1 м/с и изменении направления движения. Пылинки, теряя скорость, осаждаются на дно. Время пылеосаж

дения уменьшается при установке полочных элементов (рис. 2.2, б). Если пыль взрывоопасна, ее следует увлажнять.

Среди имеющихся конструкций пылеосадочных камер заслуживает внимания инерционный пылеотделитель, представляющий собой горизонтальную лабиринтную камеру (рис. 2.2, в). В этой оригинальной камере механические примеси выпадают в результате резких изменений направления потока, ударов пылинок о перегородки и завихрения воздуха.

В пылеосадочных камерах происходит лишь грубая очистка воздуха от пыли; в них задерживаются пылинки размером более 40…50 мк. Остаточная запыленность воздуха после такой очистки нередко составляет 30…40 мг/м3, что не может быть признано удовлетворительным даже в тех случаях, когда воздух после очистки не возвращается в помещение, а выбрасывается наружу. В связи с этим нередко необходима вторая ступень очистки воздуха в сетчатых, матерчатых фильтрах и других устройствах для улавливания пыли.

Более эффективным и менее дорогим пылеуловителем для грубой очистки следует считать циклон (рис. 2.3). Циклоны получили широкое распространение и применяются для задерживания стружек, опилок, металлической пыли и др. Запыленный воздух подводится вентилятором в верхнюю часть наружного цилиндра циклона. В циклоне воздух получает вращательное движение, вследствие чего развивается центробежная сила, отбрасывающая механические примеси к стенкам, по которым они скатываются в нижнюю часть циклона, имеющую форму усеченного конуса, и периодически удаляются. Очищенный воздух через внутренний цилиндр циклона, так называемую выхлопную трубу, выходит наружу. Степень очистки 85…90 %.

Кроме обычных циклонов в промышленных предприятиях применяются группы из 2, 3, 4 циклонов. На тепловых станциях для предварительной очистки в комплексе с другими методами золоулавливания устанавливают мультициклоны (рис. 2.4). Мультициклон представляет собой объединение в одном агрегате многих маленьких циклонов диаметром 30…40 см с общей подачей в них загрязненного воздуха и общим бункером для осевшей золы. В мультициклоне задерживается до 65… 70 % золы.

Интерес представляют пылеуловители мокрого типа (скрубберы), отличительной особенностью которых является захват улавливаемых частиц жидкостью, которая затем уносит их из аппарата в виде шлама. Процессу улавливания пыли в мокрых пылеуловителях способствует конденсационный эффект, проявляющийся в предварительном укрупнении частиц за счет конденсации на них водяных паров. Степень очистки скрубберов около 97 %.В этих аппаратах запыленный поток соприкасается с жидкостью или с поверхностями, орошаемыми ею. Простейшей конструкцией является промывная башня (рис. 2.5), заполненная кольцами Рашига, стекловолокном или другими материалами.

Чтобы увеличить поверхность соприкосновения капелек жидкости (воды), применяют распыление. К аппаратам такого типа относятся скрубберы и трубы Вентури. Часто для вывода образовавшегося шлама труба Вентури дополняется циклоном (рис. 2.6).

Эффективность мокрых пулеулавливателей в основном зависит от смачиваемости пыли. При улавливании плохо смачивающихся пылей, например угольной, в воду вводят поверхностно-активные вещества.

Мокрые пылеулавливатели типа трубы Вентури отличаются большим расходом электроэнергии для подачи и распыления воды. Этот расход особенно возрастает, когда улавливается пыль с частицами размерами менее 5 мкм. Удельный расход энергии при переработке газов конверторов с кислородным дутьем в случае применения трубы Вентури составляет от 3 до 4 кВт·ч, а в случае простой промывной башни менее 2 кВт·ч на 1000 м3 обеспыливаемого газа

К недостаткам мокрого пылеулавливателя относятся: сложность выделения уловленной пыли из воды (необходимость отстойников); возможность щелочной или кислотной коррозии при переработке некоторых газов; значительное ухудшение условий рассеивания через заводские трубы отходящих газов, увлажненных при охлаждении в аппаратах этого типа.

Принцип действия пенного пылеуловителя (рис. 2.7) основан на прохождении воздушных струек через водяную пленку. Устанавливают их в отапливаемых помещениях для очистки воздуха от плохо смачиваемой пыли с начальной загрязненностью свыше 10 г/м3.

В пылеулавливателях типа фильтров газовый поток проходит через пористый материал различной плотности и толщины, в котором задерживается основная часть пыли. Очистку от грубой пыли проводят в фильтрах, заполненных коксом, песком, гравием, насадкой различной формы и природы. Для очистки от тонкой пыли применяют фильтрующий материал типа бумаги, войлока или ткани различной плотности. Бумагу используют при очистке атмосферного воздуха или же газа с низким содержанием пыли. В промышленных условиях применяют тканевые или рукавные фильтры. Они имеют форму барабана, матерчатых мешков или карманов, работающих параллельно.

Основным показателем фильтра является его гидравлическое сопротивление. Сопротивление чистого фильтра пропорционально корню квадратному из радиуса ячейки ткани. Гидравлическое сопротивление фильтра, работающего в ламинарном режиме, изменяется пропорционально скорости фильтрации. С увеличением слоя осевшей на фильтре пыли его гидравлическое сопротивление возрастает. В качестве фильтрующих тканей в промышленности раньше широко применяли шерсть, хлопок. Они позволяют очищать газы при температуре меньше 100 °С. Теперь их вытесняют синтетические волокна – химически и механически более стойкие материалы. Они менее влагоемки (например, шерсть поглощает до 15 % влаги, а тергаль лишь 0,4 % от собственной массы), не гниют и позволяют перерабатывать газы, при температуре до 150 °С.

Кроме того, синтетические волокна термопластичны, что позволяет при помощи простых термических операций проводить их монтаж, крепление и ремонт.

Для средней и тонкой очистки запыленного воздуха с успехом применяют различные матерчатые фильтры, например рукавный фильтр (рис. 2.8). Рукавные фильтры получили распространение во многих отраслях промышленности и, особенно в тех, где пыль, содержащаяся в очищаемом воздухе, представляет ценный продукт производства (мукомольная, сахарная и др.).

Фильтрующие рукава из некоторых синтетических тканей с помощью термической обработки выполняются в виде гapмошки, что значительно увеличивает их фильтрующую поверхность при тех же размерах фильтра. Стали применяться ткани из стекловолокна, которое выдерживает температуру до 250 °С. Однако хрупкость таких волокон ограничивает сферу их применения.

Рукавные фильтры очищают от пыли следующими методами: механическим встряхиванием, обратной продувкой воздухом, ультразвуком и импульсной продувкой сжатым воздухом (гидравлический удар).

Главным достоинством рукавных фильтров является высокая эффективность очистки, достигающая 99 % для всех размеров частиц. Гидравлическое сопротивление тканевых фильтров составляет обычно 0,5…1,5 кПа (50…150 мм вод. ст.), а удельный расход энергии равен 0,25…0,6 кВт·ч на 1000 м3 газа.

Развитие производств металлокерамических изделий открыло новые перспективы в пылеочистке. Металлокерамический фильтр ФМК предназначен для тонкой очистки запыленных газов и улавливания ценных аэрозолей из отходящих газов предприятий химической, нефтехимической и других отраслей промышленности. Фильтрующие элементы, закрепленные в трубной решетке, заключены в корпус фильтра. Они собираются из металлокерамических труб. На наружной поверхности фильтрующего элемента образуется слой уловленной пыли. Для разрушения и частичного удаления этого слоя (регенерация элементов) предусмотрена обратная продувка сжатым воздухом. Удельная нагрузка по газу 0,4…0,6 м3/(м2∙мин). Рабочая длина фильтрующего элемента 2 м, его диаметр 10 см. Эффективность пылеулавливания 99,99 %. Температура очищаемого газа до 500 °С. Гидравлическое сопротивление фильтра 50…90 Па. Давление сжатого воздуха для регенерации 0,25…0,30 МПа. Период между продувками от 30 до 90 мин, продолжительность продувки 1…2 с.

Для технологической и санитарной очистки газов от капель тумана и растворимых аэрозольных частиц предназначен волокнистый туманоулавливатель.

Применяется в производстве серной и термической фосфорной кислот. В качестве «насадки» используется новое синтетическое волокно.

 

Аппарат имеет цилиндрическую или плоскую форму, работает при высоких скоростях фильтрации и поэтому имеет небольшие габариты; в случае цилиндрической конструкции они составляют: диаметр от 0,8 до  2,5 м, высота от 1 до 3 м. Аппараты имеют производительность от 3 до 45 тыс. м3/ч, гидравлическое сопротивление аппарата от 5,0 до 60,0 МПа. Эффективность улавливания – выше 99 %. Волокнистые туманоулавливатели дешевле, надежнее и проще в эксплуатации, чем электрофильтры или скрубберы Вентури.

Принцип действия электрофильтра (рис. 2.9) основан на том, что пылевые частицы, проходя с воздухом через электрическое поле, получают заряды и, притягиваясь, оседают на электродах, с которых затем удаляются механическим способом. Степень очистки в электрофильтрах 88…98 %.

Если напряженность электрического, поля между пластинчатыми электродами превышает критическую, которая при атмосферном давлении и температуре 15 °С равно 15 кВ/см, молекулы воздуха, находящегося в аппарате, ионизируются и приобретают положительные и отрицательные заряды. Ионы движутся к противоположно заряженному электроду, встречают при своем движении частицы пыли, передают им свой заряд и те, в свою очередь, направляются к электроду. Достигнув электрода, частицы пыли теряют свой заряд.

Осевшие на электроде частицы образуют слой, который удаляют с его поверхности при помощи удара, вибрации, отмывки и т.д. Постоянный (выпрямленный) электрический ток высокого напряжения (50…100 кВ) в электрофильтр подают на так называемый коронный электрод (обычно отрицательный) и осадительный электрод. Каждому значению напряжения соответствует определенная частота искровых разрядов в межэлектродном пространстве электрофильтра. В то же время частота разрядов определяет степень очистки газа.

По конструкции электрофильтры подразделяют на трубчатые и пластинчатые. В трубчатых электрофильтрах запыленный газ пропускают по вертикальным трубам диаметром 200…250 мм, по оси которых натянут коронирующий электрод – провод диаметром 2…4 мм. Осадительным электродом служит сама труба, на внутренней поверхности которой оседает пыль. В пластинчатых электрофильтрах коронирующие электроды (провода) натянуты между параллельными плоскими пластинами, являющимися осадительными электродами. В электрофильтрах улавливают пыль с частицами размером выше 5 мкм. Их рассчитывают так, чтобы очищаемый газ находился в электрофильтре в течение 6…8 с.

Для увеличения эффективности электроды иногда смачивают водой; такие электрофильтры называют мокрыми. Гидравлическое сопротивление электрофильтров невелико – 150…200 Па. Расход энергии в электрофильтрах изменяется от 0,12 до 0,20 кВт∙ч на 1000 м3 газа. Электрофильтры работают эффективно и экономично при значительных объемах выбросов и высоких температурах. Эксплуатационные затраты на содержание и обслуживание электрофильтров, установленных, например, на электростанции, составляют около 3 % общих расходов.

В ультразвуковых пылеуловителях используется способность пылевых частиц под действием мощного звукового потока к коагуляции (образованию хлопьев), что очень важно для улавливания из воздуха аэрозолей. Эти хлопья выпадают в бункер. Звуковой эффект создается сиреной. Выпускаемые у нас сирены могут быть применены в пылеочистных установках пропускной способностью до 15000 м3/ч.

Описанные устройства для очистки воздуха цехов и отделов промышленных предприятий, удаляемого вытяжной вентиляцией в атмосферу, далеко не исчерпывают все виды пылеуловителей и фильтров, используемых для предотвращения загрязнения воздушного бассейна городов.