Состояние рабочего тела определяется его параметрами. Под воздействием внешних сил рабочее тело изменяет свое состояние, связанное с изменением его параметров, т.е, протекает термодинамический процесс.
Последовательный ряд термодинамических процессов, в которых рабочее тело претерпевает изменение и в результате возвращается в первоначальное состояние, называется круговым процессом или циклом.
Циклы подразделяются на прямые и обратные. Прямыми называют циклы, в которых теплота преобразуется в работу, обратными – в которых теплота передается от более холодного тела к более нагретому.
Прямые циклы изображаются в диаграммах линиями, идущими по часовой стрелке (по таким циклам работают тепловые двигатели), обратные циклы – линиями, идущими против часовой стрелки (по таким циклам работают холодильные машины и тепловые насосы).
Прямой цикл
Рассмотрим систему, состоящую из двух источников теплоты и рабочего тела. При изучении идеальных циклов процесс подвода теплоты рассматривается без изменения химического состава рабочего тела. В большинстве реально существующих двигателей теплота подводится в процессе сгорания топлива. Процесс отвода теплоты рассматривается как передача теплоты к источнику с низкой температурой. В реальных двигателях теплота может отводиться вместе с выпуском отработавшего рабочего тела (пара или газа) в атмосферу. В pv-диаграмме прямой цикл изображается так, как показано на рис. 9.1.
Рис. 9.1. Прямой цикл
Если от более нагретого источника теплоты к рабочему телу подвести теплоту q1 , то состояние рабочего тела меняется, происходит расширение по линии 1–с–2. Полезную работу, совершенную в процессе расширения 1–с–2 можно определить площадью 1–с–2–b–а–1.
В процессе 2–d–1 рабочее тело взаимодействует с источником низких температур. При этом происходит отвод теплоты q2 от рабочего тела и его сжатие. В процессе сжатия затрачивается работа, величина которой равна площади a–1–d–2–b–a. Из диаграммы видно, что работа расширения больше работы сжатия. Полезная работа равна разности работ расширения и сжатия:
.
В результате совершения такого цикла получается полезная работа, которую затем можно использовать для различных целей.
В соответствие с первым законом термодинамики для рассматриваемого кругового цикла , и поэтому или
.
Для оценки степени совершенства прямых циклов используется термический коэффициент полезного действия (), под которым понимается отношение работы, полученной в цикле, к затраченной теплоте:
.
Обратный цикл
Пусть имеется два источника теплоты и рабочее тело, над которым совершается работа. Рабочее тело переносит теплоту q2 от источника с низкой температурой к источнику с более высокой температурой. На совершение такого несамопроизвольного процесса затрачивается работа lц.
Процесс расширения рабочего тела осуществляется с подводом теплоты q2 по линии 1–d–2 (рис. 9.2). В этом процессе полезная работа равна площади 1–d–2–b–a–1. В процессе сжатия 2–с–1 рабочее тело взаимодействует с источником с более высокой температурой, передавая ему теплоту q1. В процессе сжатия затрачивается работа, равная площади 2–c–1–a–b–2.
Рис. 9.2. Обратный цикл
Из диаграммы видно, что работа сжатия больше работы расширения. Работа цикла получается отрицательной. В результате совершения обратного цикла теплота отбирается от источника с низкой температурой и передается к источнику с высокой температурой.
Для оценки работы холодильных машин применяется холодильный коэффициент, равный отношению полезного количества теплоты (q2), отнятого от холодного источника, к затраченной работе:
.
В холодильной машине количество теплоты q1 выбрасывается в окружающую среду, т.е. в источник неограниченных размеров.
Машины, предназначенные для дальнейшего использования теплоты q1 и передачи ее в источник ограниченных размеров, называют тепловыми насосами. Эффективность работы тепловых насосов оценивается отопительным коэффициентом, представляющим собой отношение количества теплоты (q1), переданного потребителю, к затраченной работе:
.