Положим |X| < |Y|, если |X| £ |Y| и не существует биекции между X и Y.
Теорема Кантора. Для любого множества X справедливо |X| < |P(X)|, где P(X) – множество всех подмножеств множества X.
Доказательство. Ясно, что |X| £ |P(X)|. Предположим, что существует биекция f: X à P(X). Рассмотрим подмножество:
A = {x Î X : x Ï f(x)}.
Если существует y Î X, для которого f(y) = A, то из y Î A будет следовать: y Ï f(y) = A; а из y Ï A = f(y) следует: y Î A. Отсюда нет элементов y Î X, таких, что f(y) = A, и, стало быть, f – не биекция. Теорема доказана. Эта теорема показывает, что необходимость уточнения понятия множества была известна Георгу Кантору:
Антиномия Кантора. Предположим, что все множества составляют некоторое множество U. Тогда каждое подмножество A Í U принадлежит U. Стало быть, P(U) Í U и имеет место |P(U)| £ |U|, что противоречит теореме Кантора. Следовательно, собрание всех множеств не является множеством.