Композиционные материалы – это искусственные материалы, получаемые сочетанием компонентов с различными свойствами. Одним из компонентов является матрица (основа), другим – упрочнители (волокна, частицы). В качестве матриц используют полимерные, металлические, керамические и углеродные материалы. Упрочнителями служат волокна (стеклянные, борные, углеродные, органические), нитевидные кристаллы (карбидов, боридов, нитридов и др.) и металлические проволоки, обладающие высокой прочностью и жесткостью.
При составлении композиции эффективно используются индивидуальные свойства составляющих композиций. Свойства композиционных материалов зависят от состава компонентов, количественного соотношения и прочности связи между ними. Комбинируя объемное содержание компонентов, можно, в зависимости от назначения, получать материалы с требуемыми значениями прочности, жаропрочности, модуля упругости или получать композиции с необходимыми специальными свойствами, например магнитными и т.п.
Содержание упрочнителя в композиционных материалах составляет 20 – 80 % по объему. Свойства матрицы определяют прочность композиционного материала при сжатии и сдвиге. Свойства упрочнителя определяют прочность.
Композиционные материалы имеют высокую прочность, жесткость, жаропрочность и термическую стабильность. Плотность композиционных материалов 1,35 – 4,8 г/см3. Композиционные материалы являются весьма перспективными конструкционными материалами для многих отраслей машиностроения.
Карбоволокниты (углепласты) – это композиции из полимерной матрицы и упрочнителей в виде углеродных волокон. Для полимерной матрицы используются полиимиды, эпоксидные и фенолформальдегидные смолы. Карбоволокниты КМУ-2 и КМУ-2л на основе полиимидов можно применять при температуре до 300°С. Они водо- и химостойки. Карбоволокниты содержат, наряду с угольными, стеклянные волокна, что удешевляет материал. Карбоволокниты используют в химической, судостроительной и авиационной промышленности.
Бороволокниты – это композиции из полимерного связующего и упрочнителя – борных волокон. Для получения бороволокнитов применяют модифицированные эпоксидные и полиамидные связующие. Бороволокниты имеют высокую прочность при сжатии, сдвиге, высокую твердость, тепло- и электропроводность. Бороволокниты водо- и химостойки. Изделия из бороволокнитов применяют в космической и авиационной технике (лопатки и роторы компрессоров, лопасти винтов вертолетов и т.д.).
Органоволокниты – это композиции из полимерного связующего и упрочнителей из синтетических волокон. Упрочнителями служат эластичные волокна, лавсан, капрон, нитрон и др. Связующими служат полиамиды, эпоксидные и фенолформальдегидные смолы. Органоволокниты имеют малую плотность, сравнительно высокую ударную вязкость. Органоволокниты применяют в авиационной технике, электропромышленности, химическом машиностроении и др.
Металлы, армированные волокнами – композиционные материалы с металлической матрицей и упрочнителями в виде волокон. Упрочнителями служат волокна бора, углеродные волокна, нитевидные кристаллы тугоплавких соединений, вольфрамовая или стальная проволока. Матричный материал выбирают из учета назначения композиционного материала (коррозионная стойкость, сопротивление окислению и др.). В качестве матриц используют легкие и пластичные металлы, алюминий, магний и их сплавы. Количество упрочнителя составляет по объему 30 — 50 %. Металлы, армированные волокнами, применяются в авиационной и ракетной технике.