Установим правила, по которым можно находить производные суммы, произведения, частного двух функций, производную сложной функции, зная производные этих функций, а также производную обратнгой функции.
Теорема 1. Если функции u (x), v (x) дифференцируемы в точке x, то их сумма дифференцируема в этой точке, причем
(u(x) + v(x))‘ = u’(x)+v’(x).