3.5.3  Вычисление длины дуги кривой

1. Длина дуги гладкой кривой , содержащейся между двумя точками с абсциссами  и  вычисляется по формуле

.

2. Если кривая задана уравнениями в параметрической форме   ,

где  и  – непрерывно дифференцируемые функции, то длина дуги кривой будет равна

,

где  – значения параметра, соответствующие концам дуги.

3. Если кривая задана уравнением  в полярной системе координат , то длина дуги определяется по формуле

,

где  – значения полярного угла в крайних точках дуги.

Пример 3.10. Найти длину астроиды  (рис. 3.10).

Рис. 3.10. Иллюстрация к примеру 3.10

Решение. Дифференцируем уравнение астроиды, считая, что :

,

откуда 

,

поэтому длина дуги одной четвертой части астроиды будет равна

.

Отсюда  .

Пример 3.11. Найти длину одной арки циклоиды   .

Решение.  , следовательно,

.

Пример 3.12. Найти длину кривой .

Решение. . Длина кривой

.